
Augmenting Film and Video Footage with
Sensor Data

Norman Makoto Su∗, Heemin Park�, Eric Bostrom∗, Jeff Burke�, Mani B. Srivastava�, Deborah Estrin∗
∗Department of Computer Science,

�Department of Electrical Engineering,
�School of Theater, Film and Television

University of California, Los Angeles
normsu@cal.berkeley.edu, {hmpark,mbs}@ee.ucla.edu, {ebostrom,destrin}@cs.ucla.edu, jburke@hypermedia.ucla.edu

Abstract— With the advent of tiny networked devices, Mark
Weiser’s vision of a world embedded with invisible computers
is coming to age. Due to their small size and relative ease of
deployment, sensor networks have been utilized by zoologists,
seismologists and military personnel. In this paper, we investigate
the novel application of sensor networks to the film industry. In
particular, we are interested in augmenting film and video footage
with sensor data. Unobtrusive sensors are deployed on a film set
or in a television studio and on performers. During a filming of a
scene, sensor data such as light intensity, color temperature and
location are collected and synchronized with each film or video
frame. Later, editors, graphics artists and programmers can view
this data in synchronization with film and video playback. For
example, such data can help define a new level of seamless inte-
gration between computer graphics and real world photography.
A real-time version of our system would allow sensor data to
trigger camera movement and cue special effects. In this paper,
we discuss the design and implementation of the first part of our
embedded film set environment, the augmented recording system.
Augmented recording is a foundational component for the UCLA
Hypermedia Studio’s research into the use of sensor networks in
film and video production. In addition, we have evaluated our
system in a television studio.

I. INTRODUCTION

It remains to be seen what the real-world wireless sensor
network applications (WSNA) will be. Much of the ongoing
motivation for WSNs are for monitoring natural phenomenon
such as seismic propagation in buildings [1], animal habi-
tats [2] or red-tide concentrations [3]. In such applications,
WSNs are an ideal fit because they are minimally intrusive to
their surrounding environment, as well as being disposable
and easily deployed. As of late, however, wireless sensor
networks have also been viewed as an enabler of ubiquitous
environments. One can imagine sensors being deployed in
groceries, schools or shopping malls. The requirements for
a ubiquitous environment parallel those of the aforementioned
monitoring applications. Indeed, these sensors will, as Mark
Weiser prophetically stated, “weave themselves into the fabric
of everyday life until they are indistinguishable from it” [4].
Sensor networks promise to provide a way to actuate on and
record the dynamic events that are part of our everyday lives.

We believe WSNs will also prove immensely useful for
filmmaking and media production. In traditional production,
these networks will enable cost savings through efficient and
detailed data gathering as well as offer increased expressive

capabilities for the creative team through decision support and
control of existing automated equipment. Our research seeks
to explore the potential application of WSN deployments on
film and television sets to support the daily work of production.
Using WSNs, we can gain the following:

Seamless Integration: Any devices that are deployed on the
set or on the performers ought to provide as little interference
as possible to actors, directors and technicians.

Mobility: In addition, filming is often done in various
harsh environments where deploying large equipment can
be difficult. Thus, robust, lightweight and easily configured
equipment is ideal.

Increased Expressiveness: Special effects and complex shots
are heavily scripted and precisely choreographed to achieve the
desired results. In the future, data from a WSN could be used
to adjust these processes on-the-fly according to creative rules
defined by the director or cinematographer.

In this paper, we describe the first step in realizing a
ubiquitous film set where sensors are deployed on a set to
monitor and actuate based on lighting conditions, acoustic
events, director cues and performer gestures. We have built
a system infrastructure to augment film footage with sensor
data. Augmented footage is a sensor data record synchronized
with the film camera’s ‘privileged’ visual record1. At this early
stage, the system supports display of sensor data corresponding
to each frame when video proxies from a shot are reviewed.

While recording a scene, sensors will collect vital data
that is synchronized with each film or video frame. In this
post-facto synchronization scheme, one can later view the
recorded film and observe its corresponding sensor data. Such
synchronized data can be utilized, for example, by digital
artists to add CG to scenes according to the environment. In
the future (as yet unimplemented), a real-time version of this
augmented recording system could actuate camera movements
and special effect cues. From hereon, “augmented recording
system” shall be abbreviated as ARS.

This paper is organized as follows. Section II describes
related work, and Section III describes the requirements for
ARS. This is followed by Sections IV-VIII, an outline of

1The film camera’s viewpoint is ‘privileged’ because for film production,
all that matters at the end of a shoot is what has been captured by that camera.

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications (PERCOM’04)
0-7695-2090-1/04 $ 20.00 © 2004 IEEE

ARS’s system architecture and modules. Evaluations are de-
tailed in Sections IX and X. Finally, Section XI states our
conclusion and future works.

II. RELATED WORK

Previous work has been done at UCLA’s Hypermedia Studio
in theatre production. In a production of Eugene Ionesco’s
Macbett [5], a complete system for controlling theatrical
lighting and sound based on performer position and movement
was developed. For example, tracking devices were embedded
into the witch characters’ staves. The performer could, at will,
conjure up lightning strikes or whirling winds by throwing the
staff in the air or swirling it.

At MIT’s Media Lab, Joesph Paradiso’s Responsive Envi-
ronments Group’s work on interactive environments that, for
example, create music based on user gestures, foot positions
and jumping is an example of an environment embedded
with sensors [6]. The focus here is more on building sensors
which can dynamically change environments, rather than on
recording changes in environments. However, dynamically
changing camera movement, etc. is a future goal of ARS.

The augmented footage concept itself is similar in spirit to
the Smart Kindergarten [7] and Classroom 2000 [8] projects
in that it collects a variety of time-stamped data from human
inhabited environments. On the other hand, ARS requires a
much more stringent synchronization requirement.

There already exists a large body of research based on image
processing. Indeed, one might wonder whether cameras may
make the use of sensors a moot point. With image processing
one can infer location, lighting, etc. Sensors, however, can
provide a granularity of accuracy hard to achieve purely with
image processing techniques. Moreover, cameras require line
of sight with the scene being filmed. Should we wish to
monitor multiple areas of interest in a film set, numerous
cameras are required. On the other hand, sensors have a small
form-factor, making them easy (and cheap) to deploy. Finally,
there are many phenomenon that can not be easily inferred
from image processing. Factors such as temperature or wind
speed, which may prove to be interesting to installation art,
are easily measured with sensor networks. We do, however,
believe vision technologies will provide a valuable role, with
WSNs, in the future embedded film or TV set. For example,
image processing can provide head pose/gaze direction mea-
surements [9], motion recognition [10], and tracking [11].

III. SYSTEM REQUIREMENTS

To give a clearer idea of the requirements to consider when
building an ARS, let us give an example scenario for video
production:

1) Sensors are placed in a film set, as well as on performers.
2) A video camera starts recording a scene.
3) While recording:

a) A timecode generator (Section VI-A) signal en-
codes frame number data onto an audio track of
the video.

b) Sensors collect frame stamped data in synch with
the timecode generator.

4) The crew can view the footage with sensor readings
mapped to frames (i.e. while playing back footage, the
sensor data collected at each frame can be viewed).

Firstly, it is apparent that time synchronization with both the
camera and sensors is necessary. Secondly, we require sensor
data for each video frame. This requires a very high sampling
rate demanded by TV standards. Thirdly, we wish to provide
an easily extendible system encompassing a wide range of
sensor devices. The final requirement is an interface to the
system that enables users to control and manage the augmented
recording system.

Preliminary mining of sensor data in augmented footage
would support two access methods: 1) random access of film
or video frames to provide additional scene information during
film footage playback that is not apparent from footage alone
and 2) sensor data-based queries of augmented footage about
high-level events and lower-level environmental conditions.
Currently, only item 1 is implemented via the Jini client
(Section VIII).

IV. SYSTEM ARCHITECTURE

In ARS, we separate software into four distinct modules:
Sensor Node Neighborhood: Each sensor node neighbor-

hood is an autonomous cluster with one basestation and several
neighboring sensors.

Serial Port Server: The serial port server directly issues
commands to the various basestation sensors, interpolates
missing data and will time synchronize sensors.

Sylph Server Middleware: Sylph [12] is a middleware solu-
tion for easily allowing higher level queries from Jini clients
to manage sensors. This server translates messages between
sensors and clients.

Jini Client: This is a Java client adhering to Jini standards. It
provides an interface for the user to control ARS, store infor-
mation on a database and to later inspect frame synchronized
sensor data.

Figure 1 shows an overview of the key components and
their connections. The lightning bolts indicate an Internet
connection. The clouds represent a wireless neighborhood.
Here, we describe the sequence of events leading to successful
storage of frame-synched data.

1) A Jini client connects to a well-known lookup service,
locates the Sylph server managing ARS and issues a
specially formatted query string.

2) The Sylph server will translate the query, issue (if any)
intermediary replies back to the Jini client and proceed
to forward the query to the serial port server.

3) The serial port server will multiplex the message to the
appropriate base station sensors.

4) The base stations will inform its surrounding sensors to
begin transferring data synched with a global timecode
generator.

5) As data streams back, the base stations will collect data
and send it to the serial port server.

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications (PERCOM’04)
0-7695-2090-1/04 $ 20.00 © 2004 IEEE

Timecode
Generator

Mote Neighborhood

Serial Port
Server

Sylph Server
Middleware

SQL Database
Server

Jini Client

Film Camera

Fig. 1. System Architecture

6) The serial port server will perform error checking and
interpolation on the data, format it and send it off to the
Sylph server.

7) The Sylph server will announce to the Jini client that
data is available.

8) The Jini client will store the ready data onto a (possibly
remote) database for later perusal.

In the following sections we will go into greater detail with
the software modules.

V. SENSOR NODE NEIGHBORHOOD

The sensors are Crossbow mica motes [13] with the standard
sensor boards equipped with a thermistor, light sensor, micro-
phone and accelerometer. In addition, we have developed a
simple MAC (medium access control) protocol for high speed
transfers. We chose motes because they are lightweight, easy
to prototype on, have wireless radios, and there exist many
sensor boards for it. In addition, it models the future vision
of what many researchers believe such nodes will be—power
constrained and limited in processing power. Another alterna-
tive include HP’s iPAQs. However, they lack the portability
and range of sensor boards that motes have.

A. Software Platform

We are running an operating system developed by UCLA’s
NESL group, called PALOS (Pseudo-ReALtime Operating
System) [14]. Currently, the bulk of today’s mote programming
is done with UC Berkeley’s excellent TinyOS. However, for
quick prototyping, we found that PALOS provides a distinct
advantage. When programming with PALOS, one defines well-
defined tasks. Each task has its own event queue. During

PALOS
Task
Table

TASK 1 Event Q

TASK 2 Task Routine
Event Q

TASK 3

TASK N

Task Routine

Task Routine
Event Q

Task Routine
Event Q

Main
Control
Loop

Fig. 2. PALOS Task Flow

the program execution, a global scheduler, by priority, runs
through each event queue, dequeuing and passing the events
to their respective tasks. By event, we mean a data structure
which stores an identifier as well as some arbitrary data.
Figure 2 shows the scheduler’s cycle. Each task can also
send messages (i.e. events) to other tasks by pushing an event
into the appropriate task’s queue. Programming with PALOS
requires minimal use of macros and reduces the likelihood
of deadlock or race conditions by enforcing a priority based
schedule. However, the tradeoff is degradation in performance.
Finally, code from TinyOS is easily ported to PALOS—several
libraries used in ARS are based on TinyOS’s.

In ARS, for example, we define the following tasks for a
basestation mote:

UART Task: The UART Task waits for a fixed size data
packet from the serial server and decides on an appropriate
action. For example, when it receives a STOP–SENDING
packet, it will tell the BMAC Task to send a packet wirelessly
telling the neighboring motes to stop sending.

Basic MAC (BMAC) Task: The BMAC Task receives mes-
sages from the UART Task to send packets over the wireless
link. It also sends messages to the Data Collection Task when
it receives a wireless packet. So, for example, upon receiving
a sensor reading from a neighboring mote, the BMAC Task
will notify the Data Collection Task of this incoming packet.

Data Collection Task: The Data Collection Task will receive
messages from the BMAC Task and forward the packet onward
to the Serial Port Server. For example, it will receive an event
with the data packet from the BMAC Task and then forward
the data packet to the Serial Port Server.

The following code snippet in Listing 2 registers the UART
and BMAC tasks:

1 UART0_Event uart0EventQ[UART_Q_SIZE];
2 BMAC_Event bmacEventQ[BMAC_Q_SIZE];
3
4 void globalInitTask() {
5 BMAC_id = PalosTask_register(StopWatch_init,
6 BMAC_task,
7 BMAC_XCNTR,
8 BMAC_RCNTR,
9 sizeof(StopWatch_Event),

10 BMAC_Q_SIZE,
11 (void *)bmacEventQ);

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications (PERCOM’04)
0-7695-2090-1/04 $ 20.00 © 2004 IEEE

12 UART0_id = PalosTask_enroll(UART0_task,
13 UART0_XCNTR,
14 UART0_RCNTR,
15 sizeof(UART0_Event),
16 UART_Q_SIZE,
17 (void *)uart0EventQ);
18 }

Listing 1. Registering Tasks in PALOS

Lines 1 and 2 are the queues for their respective tasks. As
data streams in from the UART or BMAC, the appropriate
task routine pushes an event onto these event queues. The
globalInitTask() function registers the two tasks (lines
5-17), informing PALOS to pass the popped event to either
BMAC-task or UART0-task. The XCNTR and RCNTR
variables can be redefined to control the frequency at which
each task’s event queue is processed.

When the main control loop, for example, reaches the
UART0’s event queue, it will pop the event in a FIFO fashion
and pass it to a handler, UART0-task:

1 CHAR UART0_task(void *ev) {
2 UART0_Event *event = (UART0_Event *)ev;
3 UCHAR *recvData = event->data;
4 switch(recvData[0]) {
5 case OPCODE_NUM_NEIGHBORS:
6 ...
7 return PALOS_TASK_DONE;
8 }

Listing 2. An Event Handler in PALOS

The ev (line 1) parameter is the event popped off the queue.
As evidenced by the code, a UART0 event has a data mem-
ber. We then do something with that data, and finally return
PALOS-TASK-DONE (line 7). PALOS-TASK-DONE tells the
scheduler to pop the event off the queue permanently. Other
variants include PALOS-TASK-NEXT, pop the event off the
queue and immediately handle the next event from the same
queue (i.e. for this example, we would immediately process
the next UART event waiting in the queue, instead of perhaps
processing the BMAC task next) and PALOS-TASK-KEEP,
re-push the event onto the queue and process the next event
queue normally. PALOS’s complete source code, as well as
coding examples, can be found at its Sourceforge page [14].

The MAC protocol is built on top of a physical layer which
was ported from Wei Ye’s communication stack [15]. While
Berkeley’s stack allows a longer transmission range, Ye has
shown that his stack achieves high reliability (near 100%)
and effective collision avoidance mechanisms with greater
than 4 simultaneous transmitters. Our BMAC protocol is a
very simple, barebones contention based protocol relying on
carrier sense and ACKs—it does not use CTS and RTS.
Our motivation behind this was to develop a reliable, quick
protocol for sending short packets.

B. Clustering

We chose to implement several “clusters” of mote neigh-
borhoods. The reasoning behind not simply having one central
basestation mote is simple—limited bandwidth. Let us assume
we need approximately 20 motes deployed in the film set and
packets of 30 bytes are transferred every frame (each frame

0 1 2 3 4 5 6 7 8 9 10

Number of Neighbors (percentages listed)

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 P

ac
ke

ts
 L

os
t

0.70
1.69 2.97 4.51

9.57
14.63

22.18
30.73

36.96
44.35

Fig. 3. Packet Loss Test Results

lasts 1
29.97 sec—Section VI-A has full details). Motes have an

approximate maximum transfer rate of 10 kbits per sec. This
would require transferring 30 bytes per 1.7 ms which is far
greater than the 10 kbits per sec. In ARS, we define a cluster
as a basestation and its neighboring motes. For a small film
set this one-hop topology is sufficient; however, for larger sets
requiring hundreds of sensors, a multi-hop tiered architecture
would be more appropriate [16].

In general, the maximum number of neighbors allowable
for each basestation depends on the environment, as well as
the bandwidth. We conducted empirical tests in our lab to
determine the lower bound on neighbor size. With a packet
size of 30 bytes or, equivalently, 13 frames of data, we
placed motes around a basestation (at approximately 4 inches
away) and had each neighbor mote send packets at a rate of
approximately 1

29.97 × 13 ≈ 433 ms. The test stopped once
2000 packets were successfully sent from any neighboring
mote. Results are shown in Figure 3. In ARS, we currently
would like to limit our data loss rate to 10%. Given the results,
setting the neighborhood to 5 or 6 motes seems reasonable.

C. Basestation

The basestation motes multiplex on messages from the serial
port server. Via a broadcast, it tells the neighboring motes to
start/stop sending data. The basestation can also assign roles
to neighboring motes (e.g. “record light” or “record sound”).
The basestation will listen for data from the neighboring motes
and forward them to the serial port server.

1) Potentiometer (POT) Calibration Phase: Before the
basestation begins requesting data from its neighbors, it per-
forms a potentiometer (radio power) calibration phase. The
POT calibration phase serves three purposes: discovering
neighboring motes’ ids, assigning each neighbor mote a bases-
tation and reducing the total area of the cluster. The later
allows us to minimize interference between multiple clusters.

Note that a higher potentiometer setting implies a shorter
range. For sake of clarity, we shall only refer to power settings
from now on. The algorithm’s input is X , the number of
neighbors we want a basestation to find. The basestation
broadcasts a message (at full power) requesting all neighboring
motes to set their power to a minimal value and to reply back.

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications (PERCOM’04)
0-7695-2090-1/04 $ 20.00 © 2004 IEEE

1 /* Need succ/trials to go on valid list */
2 succ <- 3
3 trials <- 4
4 neigh_found <- 0
5 init_power <- 0
6 /* constant factor to increment power */
7 power_inc <- 5
8 neigh <- Make-Zero-Hash(X)
9 valid <- Make-False-Hash(X)

10
11 BaseStation-Algo(X)
12 Adjust-Power(0,X,init_power)
13
14 Adjust-Power(t,X,power)
15 Broadcast-Change-Power(power,valid)
16 Start-Timer()
17 while not Timer-Expired()
18 do msg <- BMAC-Read()
19 if neigh[msg.src] = 0
20 then neigh_found <- neigh_found + 1
21 neigh[msg.src] <- neigh[msg.src] + 1
22 if neigh_found = X
23 then return
24 else if t = trials
25 for k in neigh.keys
26 do if neigh[k] >= succ
27 then valid[k] = true
28 neigh <- Make-Zero-Hash(X)
29 Adjust-Pot(0,X,power+power_inc)
30 else Adjust-Pot(t+1,X,power)

Listing 3. Basestation POT Calibration Pseudocode

1 Neighbor-Algo(my_id)
2 loop
3 do msg <- BMAC-Read()
4 for i in msg.valid
5 do if i = my_id
6 then break
7 Set-Power(msg.power)
8 Unicast-Power-Set-ACK(msg.src)

Listing 4. Neighbor POT Calibration Pseudocode

The basestation adds those neighbors whose reply successfully
reached it to its valid list. Then, the basestation rebroadcasts
the same message, except this time, the power value is
increased by some constant factor and the broadcast contains
the valid list. Those neighbors who are already on the valid
list ignore the message. The other neighbors will increment
their power and reply back. This process is repeated until
we find X neighbors. All neighboring motes will remember
the basestation which calibrated it and only reply to that
basestation. For full details, the reader can see the pseudocode
in Listings 3 and 4. In the current implementation, we require
that for a neighbor to be pushed onto the valid list, it must
successfully transmit to the basestation succ out of trials
times. Our scheme is similar to Kumar’s COMPOW work [17].

D. Neighbors

Upon receiving a START–SENDING message from the
basestation, the neighboring motes will buffer readings for N
frames. All data is time stamped with the mote’s own internal
film or video frame counter which is from 2 to MAX-INT.

OPCODE|FrameRef|Role|Address|FrameRef+0 Data|FrameRef+1 Data|…

Fig. 4. Neighbor→Basestation Packet Format

253 | 254 | 253 | 252 | 253 | 253

250 | 249 | 248 | 251 | 253 | 253

Neighbor Mote

Frames 1-6

Frames 7-12

Basestation Mote

253 | 256 | 253 | 253 | 253 | 253Frames 12-17

Offset = 1

Fig. 5. Filtering Mechanism

This counter is based on the mote’s internal clock. We start
the mote from frame 2 due to our latency measurements in
Section VI-C. Of course, clock drift and skewing will occur;
a solution is also described in Section VI-C. After N = 13
frames are read, the readings are sent out in one packet to
the basestation via unicast. A frame number F is attached to
indicate the frame number of the first data item; the packet
will have F to F + N frames of data. The packet format is
shown in Figure 4.

The nodes do a very simple filtering scheme. The rule is
if the last frame of the previous packet is equivalent to all
the data of the current packet to be sent, discard and don’t
send the packet. Equivalence may not be exact; for example,
light readings off the Analog to Digital Converter (ADC) often
fluctuate ±2 even though the light environment is unchanging.
An “offset” value of n makes data ±n apart equivalent (Figure
5).

Additionally, if a packet is waiting to be sent (for example,
if carrier sense saw that the channel was busy or it is waiting
for an ACK), we drop all further readings until the successful
(or we give up after retrying some k = 3 number of times)
transmission of the packet. This is handled by the network
layer’s BMAC module.

VI. SERIAL PORT SERVER

The serial port server waits for connections from the Sylph
Middleware Server. It then translates and forwards these
messages to each basestation mote. On initial startup, it sends
a NUM–NEIGHBORS command to each of its basestation
motes to find out how many neighbors surround each basesta-
tion and their respective IDs. Besides multiplexing messages
from the Sylph Middleware Server, the serial port server
has three important software modules, the Timecode Decoder
Module, Interpolation Module, and Time Synchronization
Module. The basestation sensors are connected to the serial
port server via Inside Out Networks’s Edgeport/8 (an 8 port
to RS-232 converter).

A. Timecode Decoder Module

The SMPTE, or Society of Motion Pictures and Television
Engineers, timecode standard is an international industry stan-
dard timecode signal used in films to achieve time synchro-
nization with frames. We use the Horita TG-50 Mini SMPTE

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications (PERCOM’04)
0-7695-2090-1/04 $ 20.00 © 2004 IEEE

Timecode (Audio Signal)

-150

-100

-50

0

50

100

150

SerialPort Server

(timecode decode)

Timecode Generator

0:05:11:27

0:05:11:28

0:05:11:29

0:05:12:00

0:05:12:01

0:05:12:02

:

Timecode hh:mm:ss:frame(0-29)

Audio signal

29.97 frames/sec

80 bits / frame

Fig. 6. SMPTE Decoding Process

OPCODE|Hour:Min:Sec:Frame|MoteID, Data|MoteID, Data|...

Fig. 7. Serial Port Server→Sylph Sensor Module Packet Format

Timecode Generator which generates LTC (longitudinal time
code) audio signals (Figure 6) that are typically recorded
on a special audio track on a tape, called the “strip”. For
television, such a signal has a sampling rate of 29.97 fps.
Film has a rate of 24 fps. The audio signal encodes the
hours, seconds, minutes and frames that have passed since the
timecode generator was started. Frames cycle from 0 to 29,
while hours, seconds and minutes continue to iterate. How
the device generates 29.97 fps is out of the scope of this
paper; [18] has a good introduction on the SMPTE timecode
synchronization system.

The timecode decoder module discretizes the SMPTE time-
code and generates an event for each decoded period. Such
information is used by the Timecode Synchronization Module
and Interpolation Module.

B. Interpolation Module

When a Jini client requests information from ARS, it
expects to get back information for each and every frame.
The interpolation module is responsible for combining all the
data received at the multiple basestations and sending it to
the Sylph Middleware Server. Since the network connection
between the serial server and sensor module is assumed to be
much more reliable (i.e. Internet or LAN), we pack all sensor
readings into one packet. One packet contains one frame of
data for all motes. Figure 7 shows the exact packet format.
As mentioned in Section V, motes will not send redundant
data. The interpolation module will interpolate missing data.
Consider that we may receive packets from a mote for frames
(these frame numbers are the mote’s internal frame count) 2 to
15 and then 19 to 30. In such a case, the interpolation module
will fill in frames 16 to 18 with the same data as in frame 15.

The interpolation module has an internal buffer
with two threshold values, MAX-BUFFER-SIZE and
MAX-QUEUE-SIZE. The two sizes allow us to continue
receiving packets during the interpolation process. The internal
buffer is filled with data from each of the basestations. This

Hour
Min
Sec

Frame
1

data

20

2
data

data

MAX_BUFFER_SIZE

Hour
Min
Sec

Frame
1

data

20

2
data

data

Hour
Min
Sec

Frame
1

data

20

2
data

data

Moteid frame# data data

Moteid frame# data data

Moteid frame# data data

data

data

data

MAX_QUEUE_SIZE
Moteid frame# data data data

if match

Time

Reference
frame

Last interpolated
frame

Current
frame

Fig. 8. Interpolation Process

buffer queue is of size MAX-QUEUE-SIZE and once
the queue reaches MAX-BUFFER-SIZE, the interpolation
module will construct packets from the last interpolated
frame (i.e., the last frame it sent up to the Sylph Middleware
Server) to the current frame. By comparing the mote’s
internal frame number with the frame number calculated from
the reference frame counter (i.e. the timecode generator’s
counter), the module can combine the data packets into the
format described above and send it. Figure 8 illustrates the
interpolation module process.

C. Time Synchronization Module

Our time synchronization scheme is based on two factors—
that there exists an upper bound on time drift for the motes
and that broadcast messages are received at approximately the
same time at all receivers. Other time synchronization schemes
exist for WSNs [19]. Based on tests conducted at our lab [20],
the time drift between two mica motes does not exceed 7 µs
per second. Since the duration of one frame is 1

29.97 seconds,
we have:

Tsync =
1

29.97

7 × 10−6
= 4766.7frames

Hence, if we sync the timers in the sensor nodes every
4766.7 frames, then the time drift shall not exceed one frame.
Taking a conservative route, we set Tsync to be 4500 frames
and thus we resynchronize approximately every 2.5 minutes.

The SYNC command is broadcasted from the basestation
motes. This command instructs the neighbors to stop sending
data, reset their internal frame counters to 2 and then imme-
diately start sending data again. Since broadcast messages are
inherently unreliable due to their lack of ACKs, ARS will
instruct the basestations to continue sending SYNC until they
receive data marked with frame number < 13 × T , from all
its neighbors. Note that after synching, there is a chance some

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications (PERCOM’04)
0-7695-2090-1/04 $ 20.00 © 2004 IEEE

Timecode

generator

Serial Port Server Serial Port Server

Fig. 9. Latency Test

packets are lost, even though the timer did in fact reset. This
is why we set a value T , rather than having the basestation
mote listen for a certain frame number like 0 or 13 to tell us
that SYNC succeeded.

The timecode generator is the reference frame counter. Upon
sending a SYNC command, the Serial Port Server records
the time from the timecode generator. Any packets (which
are timestamped with the sending mote’s counter) received
afterwards are in reference to that recorded reference frame
counter.

However, how can we ensure that the motes will start
sending data at the exact same time a SYNC command is
executed? For this, we constructed the experimental setup
detailed in Figure 9. We hooked up a basetation mote and
sensor node to serial ports 1 and 2, respectively. At a certain
instance of time, the current timecode address is transferred to
the basestation mote through serial port 1. Then the basetation
mote will broadcast this packet to the sensor nodes. Once the
sensor node receives this packet, the contents of the packet are
printed out through serial port 2. When receiving packets from
serial port 2, we compare the contents of the packet and the
current timecode address. We found that the latency is at most
3 frames after 20 trials. This time corresponds to about 100 ms.
This latency includes the transmission time over the wireless
channel, all the processing time in the motes, the serial port
server processing and any delay in serial cables. To utilize
this latency information, we set the initial frame value in the
sensor node using this latency value. Even such a small skew
of 2 or 3 frames (0.1 seconds) can have a detrimental effect on
some applications of ARS—lip synchronization, for example,
with audio becomes noticeable with only a few frames of skew
(100-150 ms) [21].

VII. SYLPH SERVER MIDDLEWARE

The Sylph [12] system handles registration, multiplexing
and higher-level query translation for sensor networks. Sylph
was chosen because it is particularly well-suited for supporting
multiple types of sensor nodes and allows one to write minimal
new Jini code for each new type of sensor. It has been success-
fully used in sensor network projects at UCLA such as Smart

Fig. 10. Jini Client GUI

Fig. 11. Deployment in a TV Studio (Circles are neighboring motes, squares
are basestation motes)

Kindergarten. On the lower-layer, Sylph is based on using
SET and GET operators on attributes. Once one defines an
appropriate Sensor Module for their sensors and its attributes,
it is easy for a Jini client to change or get these attribute values.
For example, in our Augmented Recording Sensor Module, we
define attributes such as light, period and command. To begin
sending data, the Jini client queries a service discovery domain
for sensors and then issues queries to each of them of the
form “READ LIGHT EVERY 30 SECONDS”. Such a query
gets translated to SET and GET requests—“SET PERIOD
30 SECONDS” and “SET COMMAND=STARTSENDING”.
Thus, Sylph provides a common interface for Jini clients to
interact with sensor nodes.

VIII. JINI CLIENT

The client will receive data for each frame and for each mote
and will store this information at a database. We use Microsoft
Access to store our information and access/store information
by using a RMI-JDBC bridge driver.

In designing a GUI to couple with the Jini client, our first
phase will be to design a GUI that will allow us to “scrub”
through film or video frames. In other words, one can fast-
forward, or rewind through frames and, at the same time,
sensor data corresponding to the displayed frames will be
shown. The client allows one to create clusters of nodes, find
their neighbors and to start or stop collection of data. Figure
10 shows the client displaying sensor data during playback of
film recorded for the evaluation in Section X.

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications (PERCOM’04)
0-7695-2090-1/04 $ 20.00 © 2004 IEEE

Fig. 12. Example of gradual light changes in the studio.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Seconds

150
160
170
180
190
200
210
220
230

L
ig

ht
 I

nt
en

si
ty

Fig. 13. Graph of light changes from Figure 12.

IX. EVALUATION I

We deployed 10 sensors (2 basestations, each with 4 neigh-
bors) in a television studio. Figure 11 shows the overall layout
of the studio. The test area was 1232x115 centimeters. The
studio has lighting controls accessed from a control room.
The control room allows the operator to finely adjust the
light intensity of certain overhead lamps. It also allows one
to quickly flash lights. In this paper, we discuss test results
from gradually changing the light intensity and flashing the
light quickly in the studio. The metric here is the latency
involved between an event captured on video and on the ARS
database. In the tests, the clustering algorithm took an average
of 2.59 minutes to complete. In the three tests, we recorded for
approximately 2.5, 2.5 and 10.0 minutes. The total amount of
data transferred from neighbors to basestation in 2.5 minutes
is 1114884.0 bytes (recall that the packet size is 31 bytes):

(2.5 × 60) ÷ 1
29.97

× 31 = 139360.5 bytes

139360.6 × 8 = 1114884.0 bytes

For 10.0 minutes, this is 4459536 bytes. Database sizes were
about 390 MB (using MS Access) for all tests.

We only tested with light readings. However, our system
can easily be extended to work with other sensors such as
temperature, acoustics, etc. that can be attached to our nodes.

A. Gradual Light Intensity Changes

Figure 12 shows footage of a gradual change of lighting.
The maximum light intensity value is 255. In these three
frames, the values were (from left to right) 235, 200 and 150.
Figure 13 shows the corresponding values from the leftmost
frame to the rightmost frame in the aforementioned figure.
From 7 to 8 seconds, there is a large drop—the change
is not gradual. This is due to the SYNC command issued
from the basestation. In our tests we found that the broadcast
mechanism was far from reliable. Any broadcast to request a
SYNC must be received by all the neighboring motes, before
ARS can continue. Otherwise, if a SYNC is not acknowledged
(i.e., all packets have reset their frame counter to 0), the serial

Fig. 14. Beginning and ending frames for a light flash.

0 5 10 15 20 25 30 35 40 45 50 55 60

Frames

70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

L
ig

ht
 I

nt
en

si
ty

Fig. 15. Light intensity recorded, where frame 1 equals the left frame of
Figure 14.

server will continue to broadcast. We found that continual
transmissions can sometimes last almost 10 seconds (in Figure
13’s case, 2 retries of SYNC were required). Perhaps polling,
or unicasting, each neighbor to SYNC would be better, since
ACKs are utilized. However, this might cause the neighboring
motes to start sampling data at slightly different times.

B. Sudden Light Intensity Changes

We found it difficult to gauge the latency purely by watching
the video and recorded sensor data stream side-by-side. So,
with this test, we stopped the video player (Window Media
Player) at the frame the instant the flash occurs. This test had
a measure of subjectivity in that it depends on the tester’s
judgment of when a light change is visible. A flash is not
truly instantaneous, but we would expect the data to show a
sharp increase in light intensity within a short period.

Figure 14 shows the first frame we chose. The graph at
Figure 15 starts off at that frame. As shown, the light intensity
does not start rising until about frame 28. This indicates a
latency of nearly one second. This is a rather large latency
(when working within the frames metric) and should be fixed.
In another test we left running for 5 minutes, the latency was
at most 2 seconds and the average latency was 1.3 seconds.
So while the SYNC was working to prevent the time drift,
there was still a significant latency (solved in Section X).

X. EVALUATION II

After the evaluation in Section IX, we determined that the
observed latency was caused by inaccuracies with how the

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications (PERCOM’04)
0-7695-2090-1/04 $ 20.00 © 2004 IEEE

0 10 20 30 40 50 60 70 80 90 100

Time (ms)

-1

0

1

2

3

4

V
ol

ta
ge

 (
vo

lt
s)

Fig. 16. Mote Timing Test: Pin Readings

Fig. 17. Evaluation II Setup: One Basestation, Three Neighbors (IDs are
shown). The lamp is above mote 14.

mote was counting 33 ms. The TinyOS Timer module, which
multiplexes on one of the mica mote’s timers (called “timer0”),
was found via oscilloscope measurements to count 35 ms ticks,
rather than 33 ms ticks. A 2 ms differential is rather large—
every 17 seconds, a one second delay is aggregated. Instead,
we dedicated timer1 for counting samples in ARS.

Figure 16 shows a sample of readings taken at a 10 ms
resolution on an oscilloscope with timer1. A pin on the mote
was set every time an ADC reading was requested and cleared
once the ADC readings were ready to be processed. As the
graph verifies, the pin is raised every 33 ms and the ADC
data is ready approximately 1 ms after the request. The later
measurement is important in that it tells us that the ADC
data can be processed before the next frame’s data becomes
available.

With the aforementioned modifications, we reconducted our
tests on a smaller scale. A halogen lamp with an attached
light dimmer was placed over four motes—one basestation
and three neighbors. The screenshot displayed in figure 17
shows the setup. In this evaluation, we used a different video
player, RadLight, because of its ease in jumping directly to
user-specified frames.

A. Delay Measurements

From 46 to 57 seconds of the recording, we quickly raised
and dimmed the light (mimicking the tests in Section IX-B).
The light intensity measurements over that period are shown
in Figure 18.

We determined that the first time the light is raised is at
approximately frame 11 frame and then, it is quickly dimmed
at approximately frame 45 . Snapshots of these frames are in
Figure 19. We did several short bursts of raising and dimming

0 50 100 150 200 250 300

Time (Frames)

30

80

130

180

230

L
ig

ht
 I

nt
en

si
ty

Mote 14
Mote 9
Mote 2

Fig. 18. Light Readings from 00:00:46-00:00:57

Fig. 19. Snapshots of Frame 11 and 45 from Figure 18

the intensity until frame 120 and then we let the light go dim
for an extended period. This was followed by brightness for
an extended period and then some random bursts of brightness
and darkness. As the figure shows, the data nicely corresponds
to the light changes. When viewing the data with the frames,
there is no noticeable delay in sensor readings with frames
Any delay is most likely a delay of about 10 frames and most
certainly less than 20 frames.

In addition, we measured delays immediately before and
after the SYNC command was issued. In both cases, the delay
was less than 20 frames.

XI. CONCLUSION AND FUTURE WORK

We have described our implementation of the Augmented
Recording System and a brief evaluation in a television studio.
Our system is fully functional and demonstrates a maximum
latency time of 667 ms (20 frames). ARS integrates the Sylph
Middleware Server to allow easy interoperability with standard
Jini clients. We have used tools such as PALOS to easily
design mote programs. With augmented footage users can view
film or video frames mapped to sensor data readings. This is
the first step to realizing a film set embedded with wireless
sensor networks at UCLA’s Hypermedia Studio.

Our future work aims to not only improve ARS’s perfor-
mance, but to further couple it with the day-to-day work of
cinematographers and directors on the set:

Calibration: During our experiments it quickly became
evident that despite equivalent phenomenon, two different

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications (PERCOM’04)
0-7695-2090-1/04 $ 20.00 © 2004 IEEE

sensor nodes would output readings which were different from
each other. The degree of difference varied widely and some
sort of normalizing of readings is needed. Work done by
Bychkovskiy, et al. [22], begins to address this issue.

More Sensors: Light intensity is certainly not the only read-
ing we are interested in. Sensors that detect color temperature,
location, audio, etc. will be especially applicable to film or
television. Cameras themselves can report aperture, shutter
angle, etc.

Semantic Indexing of Video Streams: We would like to allow
the user, in some sort of high level language or macro, to
express a certain interest in browsing parts of video streams
where some property holds. For this, we are considering WSN
runtime environments such as SensorWare [23] which provide
TCL bindings.

Enhanced Activity Detection Via Sensor Fusion: In detecting
certain activities on the film set, one type of sensor may not be
enough. Our current system simply collects data from various
sensors. Future versions will utilize fuse these sensor readings
to give a more meaningful interpretation of events occurring
in the environment—for example, vision sensors (cameras) for
localization could complement other sensors in a film set.

Dynamic Control: Currently, the lag between an event and
storing it on the database is too large for real-time actuation.
However, should ARS be able to fulfill the real-time require-
ments, equipment positions or settings could be automatically
calibrated based on events on the film set, or even on scripted
events entered in some sort of macro language. Examples
include telling a camera to shift angle dynamically based on
the actual position of the actors, in order to maintin a certain
framing as the camera and actors move.

Continuity Management: Finally, script supervision, or con-
tinuity, ensures that different shots and scenes be logically
sound and consistent within a spatiotemporal context. For
example, for practical reasons, certain scenes that are at the
end of a film may be filmed first. Perhaps ARS would be
let one to easily merge different augmented footage frame (or
different footage for the same time frame in several shots of
different angles) to allow checks for continuity.

ACKNOWLEDGEMENT

The authors would like to thank Chih-Chieh Han for his
valuable help and support in developing ARS. We would also
like to acknowledge the UCLA School of Theater, Film and
Television for graciously allowing us to run evaluations at their
television studio. Work done on ARS is based on past research
partially supported by the National Science Foundation (NSF)
under Grant No. ANI-0085773 and the Center for Embedded
Network Sensing (CENS), a NSF Science and Technology
Center. Additionally, the second author would like to express
his appreciation to Samsung for their support.

REFERENCES

[1] S. Baher, P. M. Davis, and G. Fuis, “Separation of Site Effects and Struc-
tural Focusing in the Santa Monica Damage Zone from the Northridge

Earthquake,” in Bulletin of the Seismological Society of America, vol. 92,
no. 8, Dec. 2002.

[2] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein,
“Energy-Efficient Computing for Wildlife Tracking: Design Tradeoffs
and Early Experiences with ZebraNet,” in The Tenth International
Conference on Architectural Support for Programming Languages and
Operating Systems, Oct. 2002.

[3] A. Requicha, D. Caron, C. Zhou, W. Zhang, and
X. Liu. Detection and Identification of Marine Microorgan-
isms. [Online]. Available: http://cens.ucla.edu/ProjectDescriptions/
Microorganisms–Identification/index.html

[4] M. Weiser, “The Computer for the 21st Century,” Scientific American,
pp. 94–104, Sept. 1991.

[5] J. Burke, “Dynamic Performance Spaces for Theater Production,” The-
atre Design & Technology (U.S. Institute of Theatre Technology), vol. 38,
no. 1, 2002.

[6] J. Paradiso, C. Adler, K. Hsiao, and M. Renolds, “The Magic Carpet:
Physical Sensing for Immersive Environments,” in Proceedings of the
CHI ’97 Conference on Human Factors in Computing Systems, Extended
Abstracts, 1997, pp. 277–278.

[7] M. Srivastava, R. Muntz, and M. Potkonjak, “Smart Kindergarten:
Sensor-based Wireless Networks for Smart Developmental Problem-
solving Environments,” in Proceedings of the ACM SIGMOBILE 7th
Annual International Conference on Mobile Computing and Networking,
July 2001.

[8] G. D. Abowd, “Classroom 2000: An Experiment with the Instrumen-
tation of a Living Educational Environment,” in IBM Systems Journal,
vol. 38, no. 4, 1999.

[9] Y. Matsumoto and A. Zelinsky, “Algorithm and Real-time Implemen-
tation of Head Pose and Gaze Direction Measurement System Using
Stereo Vision,” in Proceedings of the IEEE 4th International Conference
on Face and Gesture Recognition (FG2000), 2000, pp. 499–505.

[10] C. Rao, A. Yilmaz, and M. Shah, “View-Invariant Representation and
Recognition of Actions,” in International Journal of Computer Vision,
vol. 50, no. 2, 2002, pp. 203–226.

[11] S. L. Dockstader and A. M. Tekalp, “On the Tracking of Articulated and
Occluded Video Object Motion,” in Real-Time Imaging (Special Issue),
vol. 7, no. 5, pp. 415–432.

[12] A. Chen, R. R. Muntz, S. Yuen, I. Locher, S. I. Park, and M. B. Srivas-
tava, “A Support Infrastructure for the Smart Kindergarten,” Proceedings
the 6th International Symposium on Wearable Computers, 2002.

[13] TinyOS: Hardware Designs. [Online]. Available: http://webs.cs.berkeley.
edu/tos/hardware/hardware.html

[14] PALOS Sourceforge Page. [Online]. Available: http://palos.sourceforge.
net

[15] W. Ye, J. Heidemann, and D. Estrin, “A Flexible and Reliable Radio
Communication Stack on Motes,” USC Information Sciences Institute,”
Technical Report ISI-TR-565, Sept. 2002.

[16] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting the Phys-
ical World with Pervasive Networks,” in IEEE Pervasive Computing,
2002, pp. 59-69.

[17] S. Narayanaswamy, V. Kawadia, R. S. Sreenivas, and P. R. Kumar,
“Power Control in Ad-Hoc Networks: Theory, Architecture, Algorithm
and Implementation of the COMPOW Protocol,” in Proceedings of the
European Wireless Conference - Next Generation Wireless Networks:
Technologies, Protocols, Services and Applications, Feb. 2002, pp. 156–
162.

[18] SMPTE EBU timecode by Phil Rees. [Online]. Available: http://www.
philrees.co.uk/articles/timecode.htm

[19] J. Elson, L. Girod, and D. Estrin, “Fine-Grained Network Time Syn-
chronization using Reference Broadcasts,” in Proceedings of the Fifth
Symposium on Operating Systems Design and Implementation (OSDI
2002), Dec. 2002.

[20] S. Ganeriwal, private communication, 2002.
[21] C. Sreenan, “To Use or Avoid Global Clocks?” in The IEEE Workshop

on Multimedia Synchronization (Sync ’95), May 1995.
[22] V. Bychkovskiy, S. Megerian, D. Estrin, and M. Potkonjak, “Colibration:

A Collaborative Approach to In-Place Sensor Calibration,” in 2nd
International Workshop on Information Processing in Sensor Networks
(IPSN’03), 2003, pp. 301–316.

[23] A. Boulis, C.C. Han, and M. B. Srivastava, “Design and implementation
of a framework for efficient and programmable sensor networks,” in The
First International Conference on Mobile Systems, Applications, and
Services (MobiSys 2003), May 2003.

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications (PERCOM’04)
0-7695-2090-1/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

