AquaMote: Ultra Low Power Sensor Tag for Animal Localization and Fine Motion Tracking

Eun Sun Lee, Vikranth Jeyakumar, Bharathan Balaji, Leon Kozinakov, Rory Wilson, Mani Srivastava
University of California, Los Angeles

Localization to Track Animal Behavior

- Sensor tags reveal nuanced animal behavior and ecosystem dynamics
- Localization is key to understanding animal context
- Design objectives:
 - Provide frequent, accurate and fine-grained location
 - Have a long life and be extremely small

AquaMote Tag

Inertial Measurement Unit
- IMU data gives information on the actions and behaviour of the animals.
- Timestamped by using the real time clock of the Microprocessor.
- Time is synchronized opportunistically with the absolute time from GPS.

Flash Memory - NAND Flash
- Preferred over an SD card because it’s much smaller physically.
- Has much smaller read/write current.
- At the given voltage level, NAND Flash has limited storage capacity.
- Sensor rates might be reduced to allow more lifetime in the field.

GPS
- Time to First Fix is reduced to less than 6 seconds by storing valid Satellite Ephemeris and Almanac data in the GPS RAM.
- GPS is turned on only when the animal surfaces based on the reading from the pressure sensor which helps in saving power.

Bluetooth Low Energy
- Facilitates data retrieval to a host (Laptop/Smartphone).
- Allows erasing the data and tweaking calibration parameters.
- Permits communication between known anchors and other sensor tags.

Software Work Flow

1. **Turn on**
 - BLE Advertising for 10 secs
 - Connected?
 - Yes: Data Retrieval
 - No: BLE Switched off

2. **Data Collection**
 - IMU, Pressure, GPS
 - Mem. Full?
 - No: Write to buffer
 - Yes: Page Write to Flash

Power Analysis

- Measured using Keithley source meter with accuracy of 0.6 μA
- Board supply voltage: 1.8V

Future Work

Localization is difficult as accelerometer, gyroscope, and magnetometer are noisy.
- Better accuracy can be achieved with higher data collection frequency.
- Using virtual gyroscope mitigates use of power hungry gyroscopes. With 20% sampling, rest of the values can be estimated using neural networks.
- GPS can provide accurate location, time, and ground truth.

REFERENCES

